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The motion of a kink pair consisting of kink soliton in different sublattices in hydrogen-
bonded chains in the presence of an external force and damping is discussed based on
a new soliton model. The scattering cross-section of a kink pair for an electromagnetic
wave and the mobility of a kink pair are found.

The soliton phenomena were first observed by Scott Russell (1838). The dy-
namics of proton transfer along hydrogen-bonded molecular chains is an extremely
interesting and important scientific problem. The one-component soliton model
for proton transport in hydrogen-bonded molecular chains has been investigated by
a number of authors (Kashimoriet al., 1982; Xu, 1990). Considering the influence
of motion of the heavy ions sublattice on the proton sublattice, the two-component
soliton model (ADZ model) was suggested by Antonchenkoet al.(1983). In their
model, they consider the kink excitation in the proton sublattice and the bell-shape
excitation in the heavy ions sublattice. Both of these nonlinear excitations propa-
gate along the lines of chain with the same velocity as the characteristic speed of
sound of the heavy ions sublattice. Recently Pang proposed a new two-component
soliton model for proton transport in hydrogen-bonded chains (Pang and M¨uller-
Kirsten, 2000). In this model, the nonlinear excitation in the proton sublattice
and in the heavy ions sublattice are kink excitations. But it is not necessary that
the velocity of kinks be equal to the characteristic speed of sound of the heavy
ions sublattice. In the present paper, we discuss the motion of the kink pair in the
presence of an external force and damping basing on the Pang model (Pang and
Müller-Kirsten, 2000). We investigate the scattering of an electromagnetic wave
by a kink pair and show that scattering by a kink pair of an electromagnetic wave
of high frequency is similar to Thomson scattering of a free electron. Further-
more, the expression for the mobility of the kink pair is found. Good agreement is
obtained with the experimental data (Gordon, 1987, 1988, 1989).
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We consider here a new model Hamiltonian of the hydrogen-bonded molec-
ular systems (Pang and M¨uller-Kirsten, 2000)
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whereHp is the Hamiltonian of the proton sublattice. Hereui and pi = mu̇i are
the proton displacements and momenta, respectively,m is the mass of the proton,
U (ui ) is the proton potential energy in each hydrogen bond,u0 is the distance along
the chain from the top of the barrier to one of the minima in the double-well poten-
tial.4 = 2u0 is the distance between the two minima. The quantity1

2mω2
1ui ui+1

shows the correlation interaction between neighbouring protons caused by the
dipole–dipole interactions,ω0 andω1 are diagonal and nondiagonal elements of
the dynamical matrix of the proton, respectively.Hh is the Hamiltonian of the
heavy ionic sublattice with low-frequency harmonic vibration,ρi and Pi = M ρ̇ i

are the displacement of the heavy ion from its equilibrium position and its conju-
gate momentum, respectively,M is the mass of the heavy ion,c0 = l (β/M)1/2 is
the velocity of sound in the heavy ionic sublattice, andl is the lattice constant.Hint

is the interaction Hamiltonian between the protonic and the heavy ionic sublattices,
x1 andx2 are coupling constants between the proton and the heavy ion sublattices.
In the continuum approximation with the long-wavelength limit (Pang and M¨uller-
Kirsten, 2000), this Hamiltonian can be replaced by a continuum representation
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wherel is the lattice spacing andu(x, t) andρ(x, t) are the displacement fields of
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the proton and the heavy ion, respectively. The Lagrangian density of the system
corresponding to Eq. (6) can be written as

L = T −U

= 1
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The Euler-Lagrange equations of motion from (6) and (7) are

mutt = mυ2
1uxx− 2m(x1+ x2)lρxu+ U0u
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Mρt t = βl 2ρxx + 2m(x1+ x2)luux (9)

whereυ2
1 = 1

4l 2ω2
1, υ1 is the characteristic velocity of the proton.

Using the variable transformationy = x − υt and integrating Eq. (9), we
may reduce Eqs. (8) and (9) to the following equation (Cheng, 2000; Halding and
Lomdahl, 1988)

uyy+ αu− ru3 = 0 (10)

where
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here g is an, as yet, undetermined integration constant ands= υ/c0. When
ε > 0, G > 0, and 0< υ < υ1, 0 < υ < c0, Eq. (10) have kink soliton solution
(Cheng, 2000),
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From (9) and (12) we obtain
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Here we chooseg = ml(x1+x2)u2
0

Mc2
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, if we further set

b = −
√
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(13) becomes

ρ = bu (15)

We see from (12)–(15) that, in the caseυ < υ1 andυ < c0, if the nonlinear exci-
tation in the proton sublattice is the kink (antikink), then the nonlinear excitation
in the heavy ion sublattice is the antikink (kink) soliton. They propagate along the
hydrogen-bonded chains in pairs with the same velocity.

In the presence of an external force and damping, the equations of motion (8)
and (9) are replaced by the following equations (Peyraredet al., 1987):

utt− υ2
1uxx + 2(x1+ x2)luρx − U0u
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M
(17)

whereF1 andF2 are the external forces on the proton and the heavy ion, respec-
tively.01 and02 are the damping coefficients for the proton and heavy-ion motion,
respectively.

It is usually considered that the effect of an external force and damping on a
kink will only lead to a little variation of the velocity of the kink but the waveform
of the kink will not be changed. From (12)–(15) and the appropriate boundary
conditions we find the momentum of the kink pair to be

P = −1

l
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(mutux + Mρtρx) dx (18)

From Eqs. (18), (16), and (17) and considering the boundary conditions, as,

d P
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= −01Pk − 02Pak+ 2F
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where

F = F1+ bF2 (20)

Pk is the momentum of the protonic kink soliton,

Pk = −m

l
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m∗ is the effective mass of the kink in the proton sublattice.Pak is the momentum
of the antikink in the heavy-ion sublattice,

Pak = −M

l
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M∗ is the effective mass of the antikink soliton.P is the momentum of the kink
pair,

P = Pk + Pak = (m∗ + M∗) = M∗solυ (25)

M∗sol = m∗ + M∗ (26)

M∗sol is the effective mass of the kink pair.
Substituting Eqs. (21)–(26) into (19), we obtain the equation of motion of the

kink pair in the presence of an external force and damping.
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It is difficult to solve Eq. (27), we discuss only the case whereυ ¿ υ1 andυ ¿ c0.
Under this approximation,b, G, ε, M∗sol and∧ can be regarded as constants and
be written byb0, G0, ε0, M0∗

sol, and∧0, for example
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We now discuss the scattering of the kink pair for an electromagnetic wave.
We assume that the velocity and the displacement of the kink pair are very

much less than the speed of light and the wavelength of the incident electromagnetic
wave, respectively, and the incident electrical field is written byE = Eme−iÄt ,
whereEm andÄ are the amplitude and the frequency of the incident electrical
field respectively. In this case, influence of the incident magnetic field on the kink
pair can be neglected. Thus Eq. (32) becomes

dυ

dt
+∧0υ = 2e∗Em

M0∗
soll

(
ε0

G0

)1/2
e−iÄt (33)

whereF = e∗Eme−iÄt = (e1+ b0e2)Eme−iÄt, e1 ande2 are the effective charges
of the kink in the proton and in the heavy ion sublattice, respectively.

From Eq. (33), we get the acceleration of the kink pair,
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Here

tanϕ = Ä

∧0

The accelerated kink pair will produce electromagnetic radiation. The average
power of the electromagnetic wave scattered by a kink pair, obtained from
Eq. (34), is

W = 2Ä2e∗4

3πε2c4M0∗2
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(∧2
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)( ε0
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)
I0 (35)

whereε is the dielectric constant,c is the speed of light,I0 = 1
2εcE2

m is the average
energy flow of the incident electromagnetic wave. Thus we obtain the scattering
cross-section of the kink pair for an electromagnetic wave,
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In the limit of low frequency, that is,Ä¿ ∧0, Eq. (36) is given by

σ = 2Ä2e∗4
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sol l 2∧2
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namely the scattering cross-section is directly proportional toÄ2.
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In the limit of high frequency, that is,ÄÀ ∧0, Eq. (36) is written as

σ = 2e∗4
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= 8
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πr 2
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This is just the Thomson scattering cross-section,
where

rs = 2e∗2

4πεc2M0∗
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(39)

is the effective scattering radius of kink pair. Therefore, the kink pair is much like
the free electron for the case of scattering of an electromagnet wave with high
frequency.

When the frequency of the external electrical field is equal to the zero, namely,
the system is subjected to a constant electrical field with strengthE. In this case,
F = e∗E = (e1+ b0e2)E. Equation (32) becomes
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+∧0υ = 2e∗E
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The solution of Eq. (40) is
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Hereυ(0) is the initial velocity. Whent →∞, we get

υ(∞) = 2e∗E
M0∗
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(
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whereυ∞ is the power balance velocity at which the power input to the system is
just balanced by the power loss due to dissipation (Mclaughlin and Scott, 1978).
Thus we obtain the mobility of the kink pair,
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Equation (43) can be written as
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where
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Hereµ0 is the mobility of the kink in the one-component solition model (Xu,
1990). Computed to the first (linear) approximation of coupling constantx1 and
x2, Eq. (44) becomes

µ = µ0

[
1−
√

2(x1+ x2)e2lmυ1√
G0e1Mc2

0

]
(47)

This equation imply that the influence of motion of the heavy ions and the coupling
between the two sublattices is to reduce the mobility.

We have chosen the following set of model parameters for ice (Gordon,
1987, 1988, 1989; Pang and M¨uller-Kirsten, 2000; Xu, 1990):m= mp, M =
100mp, U0 = 10 ev,υ1 = 104 m s−1, c0 = 0.1υ1,1 = 2u0,1 = 0.367–0.780̊A,
l = 5Å, x1 = 3× 1047 m s−2, x2 = 0.2× 1044 m s−1, 01 = 6× 1013 s−1, νH =
3250 cm−1 ande1 = 1.5e, wheree is the protonic charge. The calculations accord-
ing to Eqs. (46) and (47) giveµ = (3.0–6.4)× 10−2 cm2 s−1 v−1. These values
are close to the observed oneµ = 7.5× 10−2 cm2 s−1 v−1 (Gordon, 1987, 1988,
1989).

In summary, we have studied Dynamic properties of proton transfer in hy-
drogen bonded chains in presence of an external force and damping, using a new
two-component soliton model. We also investigated the scattering by a kink pair of
an electromagnetic wave and show that scattering by a kink pair of an electromag-
netic wave of high frequency is similar to Thomson scattering of a free electron.
We have found the scattering cross-section of a kink pair for an electromagnetic
wave and the mobility of a kink pair. The calculated mobility is in satisfactory
agreement with the experiment.
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